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Dynamic stresses at a moving crack tip in a model of fracture propagation
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The steady-state propagation of a mode I crack in a laterally strained strip is examined. The displace-
ment field satisfies the usual equation of motion for an isotropic two-dimensional elastic medium while
the tractions on the fracture surface include a viscous dissipative term recently introduced by J. S.
Langer and H. Nakanishi [Phys. Rev. E 48, 439 (1993)]. The stress field at the crack tip is calculated
and found to change qualitatively as the crack speed increases beyond a certain critical value. Such a
dynamical modification of the crack tip stress field has an interesting indication that steady-state crack

propagation above the critical speed may be unstable.

PACS number(s): 46.30.Nz, 62.20.Mk, 81.40.Np, 03.40.Dz,

I. INTRODUCTION

There is a fundamental unresolved puzzle in dynamic
fracture [1]. The speed of a moving crack is commonly
believed to be limited only by the rate at which stored
elastic energy is transported to the crack tip. The limit-
ing speed should, therefore, be the Rayleigh wave speed
cg which is the velocity at which elastic waves travel
along the free fracture surface. However, experimentally
obtained maximum crack speeds are much lower, being
typically around half of the Rayleigh wave speed [2]. Re-
cent measurements by Fineberg et al. [3] reveal a dynam-
ic instability in the fracture of a brittle plastic. The crack
tip oscillates and the fracture surface roughens when the
velocity is larger than about 0.34cy. The onset of a dy-
namic instability may explain why observed crack speeds
are so much lower than the theoretical maximum.

The possible existence of an instability in crack propa-
gation was first suggested by a calculation of Yoffe [4].
She considered a steadily propagating crack in a plate of
isotropic elastic material. The crack has the form of a
straight narrow slit and maintains its length while mov-
ing. The angular variation of the circumferential tensile
stress acting across a small fixed distance from the head
of the crack was calculated. She found that for small
crack speeds, this stress component has a maximum
along the direction of crack growth. For crack speeds
greater than about 60% of the transverse wave speed c,
of the material, however, the maximum shifts to a direc-
tion inclined at about 60° to that of crack growth. Yoffe
then suggested if a crack is to advance in a direction nor-
mal to the maximum direct stress, this feature could ac-
count for the tendency of rapidly growing cracks to curve
and bifurcate into several branched cracks in brittle ma-
terials. This could also explain why steady-state crack
propagation cannot occur at high speeds. However, for a
two-dimensional elastic plate, ¢ is about 0.87-0.93 of ¢,
(depending on the value of Poisson’s ratio); the critical
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speed that she found is, therefore, higher than the max-
imum cracks speeds observed in experiments and particu-
larly higher than the critical velocity observed by Fine-
berg et al. [3].

The problem set up by Yoffe is not physically realistic.
Craggs [5] repeated the calculation for a semi-infinite
crack and Baker [6] considered a transient crack growth
problem. Both found the same asymptotic stress field
close to the crack tip. It is now well known that this
asymptotic stress field is universal and has a square root
singularity at the crack tip. Because of this singularity,
only the angular distribution at a small fixed distance
from the crack tip can be studied, as was done by Yoffe.
However, no real material can support such a singular
stress distribution. The potentially large stresses in the
vicinity ahead of the crack are relieved through plastic
flow or some other inelastic processes. If this inelastic
crack tip region is small, compared to the crack length
and the body dimensions, the stress distribution outside
the inelastic zone is adequately described by Yoffe’s
singular stress field. However, one would expect that the
stresses right at the crack tip are more relevant in
governing crack advance. Thus, one should study the
principal stress components at the tip. Conventionally,
the inelastic crack tip region is modeled by the so-called
cohesive zone [7]. The opening of the crack is resisted by
a cohesive stress which acts in a small region just behind
the crack tip. The Barenblatt condition is applied to
make the stress nonsingular which also determines the
length of the cohesive zone.

In Yoffe’s work, the crack speed is just taken to be a
constant. The existence of such steady-state solutions
cannot be demonstrated within the framework of her cal-
culation. In order for steady-state crack propagation to
be physically realistic, some velocity-dependent dissipa-
tion mechanisms have to be present. Langer [8] has stud-
ied models of crack propagation with different dissipation
mechanisms, such as velocity-dependent friction and Kel-
vin viscoelasticity. In these models, the dissipative mech-
anism acts in the bulk of the material, i.e., it appears as a
term in the equation of motion for the displacement field.
The crack tip stress field is regularized by the cohesive-
zone concept described above. More recently, Langer
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and Nakanishi [9] have introduced a new model of crack
propagation. The new ingredient is a novel viscous dissi-
pation which acts only on the fracture surface. The stress
field at the crack tip was found to be nonsingular even
without applying the usual Barenblatt condition. Fur-
thermore, various interesting consequences were found
[10].

This paper will report the investigation of using this
new element of viscous dissipation to study steady-state
propagation of a mode I crack. The crack moves along
the centerline of an infinite strip which has a finite width
and is laterally strained. The crack tip stress field is cal-
culated and it is found that the two principal stresses act
on directions along and perpendicular to the centerline.
For small crack speeds, the principal stress acting normal
to the direction of crack growth (the centerline) is larger,
as one would expect. However, when the crack moves
faster than some critical speed, the principal stress acting
along the centerline becomes larger. When this happens,
the crack will grow in a direction parallel to the max-
imum principal stress. Moreover, the shear stress along
any line that makes a small angle with the centerline will
then be acting in a direction such that any small devia-
tion of the crack growth from the original one is
enhanced. These features indicate that steady-state crack
propagation at speeds faster than the critical value may
be unstable.

II. SPECIFICS OF THE PROBLEM

Consider an infinite strip of elastic material with half-
width W as shown in Fig. 1. The two edges are clamped
rigidly and displaced by an outward distance A. A mode
I crack travels from right to left along the x axis. The
displacement field of the material, u(x,y,t), satisfies the
usual two-dimensional elastic wave equation:

i=c2V2u+(c}—c2)V(V-u), .1
with the boundary conditions
u(x,tW,t1)=0, —owo<x<ow 2.2)
y
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FIG. 1. Schematic diagram of a mode I crack propagating at
speed v along the centerline of a laterally strained strip of un-
strained half-width W.
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and
uy(x,j:W,t)=iA, —w0<x< oo, (2.3)

The transverse and longitudinal wave speeds ¢, and ¢, are
given by

E 172
=|—2 =%
¢ 20(1+7) y € KC,
with
2(1—wv) .
=2 (plane strain)

K= (2.4)
(plane stress) ,

l —_
where E and v are, respectively, Young’s modulus and
Poisson’s ratio and p is the mass density of the material.
Be definition, uy(x,0)=0 for the unbroken part of the
strip. The stress 0,5 (@ and B are two-dimensional coor-
dinate indices) is related to the displacement by standard
elasticity theory:

Cap= | |5 =1 |(V-wlbogt 18,5+ 350, | -
2.5
The condition
0,(x,0,)=0, —oo<x<o (2.6)

assures symmetry about the x axis.

To define the problem completely, one needs to specify
the stress acting on the fracture surface. As mentioned in
the Introduction, we follow Ref. 7, hereafter referred to
as LN, and assume

oolx,t), uy(x,O,t)=0

o, (x,0,t)= d%u
» Uc{uy}_n 2

.aF R uy(x,O,t)>O .

y=0
2.7

On the right hand side of Eq. (2.7), oo(x) is the as yet un-
determined stress acting across the fracture line ahead of
the crack tip, where u,=0.. Behind the crack tip where
u, >0, the first term o {u,(x,0,t)} is the cohesive stress
acting between the open crack faces and has the form

g, 0<u,<$§

0, u,>8, 2.8)

where G is the yield stress and 8 is the range of the
cohesive force. The second term is a viscous damping
stress acting on the fracture surface with 7 being a phe-
nomenological parameter. As discussed in LN, such a
term is not forbidden by any conservation law or symme-
try principle and is a simple way to introduce a localized
dissipative mechanism by adding only one new length
scale.

It is convenient to express all lengths in units of the
half-width W and all velocities in units of the transverse
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wave speed c¢,. Thus, (2.1) becomes
i=Vau+(k—1)V(V-u), 2.9

and the boundary conditions are

u(x,t1,)=0, —w<x<owx (2.10)
and
u,(x,t1,t)=*€,, —o<x<ow, (2.11)
where €, =A/W is the externally applied strain. Equa-
tion (2.7) becomes
2|8 04
Kk | ox ay y=0
€(x,t) , u,(x,0,£)=0
_ ) 8212}, (2.12)
€fu,}—7 ax? |0 u,(x,0,t)>0 .
Here, e€y(x,t)=0(x,t)/u, €. fu,}=o.{u,}/u, and

H=nc, /uW? with u=Ex/2(1+v).

III. WIENER-HOPF SOLUTIONS

To solve (2.9), we write [11] the vector displacement
field u in terms of two scalar potentials:

u=Vé+VXy2, 3.1)

which satisfy the following equations:

starts with the Fourier representation of ¢ and ¥:

2
T p)= =Y dk iken
Bey)=—"—+ [ —e™fiky), (3.4)
T = [ okegn,y) . (3.5)
2

The first term in (3.4) produces a displacement field that
satisfies the boundary conditions (2.10) and (2.11) and is
the uniformly strained state of the strip in the absence of
a crack. The most general forms for ¢ and $ which satis-
fy (3.2) and (3.3) and produce a displacement field that
satisfies (2.9) are

é(k,y)=a,(k)cosh(kB;y)+a,(k)sinh(kB,y)
+b,(k)cosh(ky)+b,(k)sinh(ky) , (3.6)

Pk,y)=a;(k)cosh(kB,y)+a,(k)sinh(kB,y)
—ib,(k)cosh(ky)—ib,(k)sinh(ky) , (3.7)

where B7=1—v?/k and B*=1—v% However, it turns
out that the terms with coefficients b, and b, drop out
from the expressions for u, and u,. Since we are actually
interested in the displacement field u and not the scalar
potentials, we can take

$(k,y)=a,(k)cosh(k[3,y)+a2(k)sinh(kB,y), (3.8)
J(k,y)=a3(k)cosh(kﬂ,y)+a4(k)sinh(k,8,y). (3.9)

Because of the symmetry of the problem, we need to con-
sider only the upper-half of the strip 0=y <1. The three
boundary conditions (2.6), (2.10), and (2.11) are used to
determine the four coefficients g;’s in terms of one of

Vi$—kVip]=0, (3.2)  them and we get
2P—V3]=0. 3.3 i(1+B7)

Viy=vyl 3.3) al(k)=~—2—ta3(k) , (3.10)
We look for steady-state solutions in a frame of reference Bi
moving with speed —v and write ¢(x,y,t)=¢(§,y) with a,(k)=iG(k)a,(k) , (3.11)
&=x +vt (similarly for ¥ and other quantities). The tip
of the crack is at £=0; thus, #,(£,0)=U(£)=0 for £ <0. au(k)=H(k)a;(k) , (3.12)

The Wiener-Hopf method for solving this problem where
J
1 (1+B?) . .
G(k)= B,— [B,B;cosh(kB,)cosh(kfB;)—sinh(kB,)sinh(kB,)] | , (3.13)
D (k) 2B,
1 (1+87) . .

H(k)= D) cosh(kf3;)cosh(kB,)— > —B,B;sinh(kB;)sinh(kB,) | , (3.14)
and

D (k)=p,B,sinh(k3;)cosh(kB,)—cosh(k B, )sinh(kB,) . (3.15)

The fourth equation on the a;’s is obtained by the Fourier transform of (2.12):

—P(k)ikO' P (k)y=ikey (k) +iké " (k)—e,, , (3.16)
where

P(k)=F(k)+ifvk? , 3.17)

Fuo="2K [1+p6u0—28,HK)] (3.18)

KV
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&= [" dee Mzyp)~e. ], (3.19)

& Hk)= fo“’ dEe*e (U(£)} . (3.20)
Here, U' (k) is the Fourier transform of U(£) and is related to the coefficients a;’s as follows:

0 (k)=kBya,(k)—ikas(k) . (3.21)

The superscript (+) in, e.g., 0'*)(k), indicates that the function has singularities only in the upper-half k plane. This is
so as it is the Fourier transform of U(&) which is nonzero only for positive §&. The superscript (—) has the correspond-
ing opposite meaning. It is checked that F(k) reduces to the Knauss integral kernel for the case of a stationary crack

[12], as v —0.

The three distinguished components of the stress tensor can then be written as

5 =y 1=2
Txx(&y)=p (1=

- dk ;
a}’y(g’y)=l‘l'eoo+f ;elkgKyy(kay)0(+)(k) ’

dke

ik (+)
r K, (k) O K)

0,,(&y)=
with

Kxx(k,y)=252—k { G(k)cosh(kB;y)+

1— [l—ilﬁ%
K

2
t

2B,

—2uk
K, (ky)=—2=

KV

1
(14+B?%) |G(k)cosh(kB,y )+

K,,(k,y)= %:v%k{( 1+B?)[cosh(kB,y)+ H(k)sinh(kB,y )] —[2B,G (k)sinh(k B,y )+ (1+B*)cosh(kB;y)]} ,

and we are interested in the limits §—0" and y —0.

The Weiner-Hopf technique is to separate the func-
tions of Eq. (3.16) into two groups, each of which con-
tains singularities only in the upper- or lower-half plane.
The two groups, being equal to each other, must each be
equal to an entire function which can be taken to be a
constant K. To achieve this, first write P(k) as the prod-
uct P (k)P ") (k) and rewrite Eq. (3.16) as

kBT k) O (k) +ik A (k)

=ﬁ%m[ew—ik@‘o‘kk)]—ikx“’(k). (3.28)

Here,

A+
~ ‘ €. (k")
A® ()= dk’ 1

C(?)—ZE (k'—k) ﬁ(—)(k') ’

(3.29)

where the contours C‘* and C~ go from — e to +
in the k' plane passing, respectively, above and below the
pole at k’=k. The constant K is then obtained by
evaluating both sides of Eq. (3.28) in the limit £ —0 and
using lim, _, ik 0P (k)=U( 0 ):

K=P0)U(w)= (3.30)

eoo
P70y
From (3.17) and (3.18),
P(0)=PP(0)P 7 A0)=1;

€t [ %e"kgxxx(k,y)ﬁ‘“(k) )

2

1+
5 sinh(kB,y)
1

sinh(kB;y)

(3.22)

(3.23)

(3.24)

2B,

K

t

[sinh(kB,y )+ H(k)cosh(kB,y)] ‘ ,

(3.25)

—2B,[sinh(kB,y)+ H(k)cosh(kS,y)] ] , (3.26)

(3.27)

thus, (3.30) assures U( o0 )sz’ as desired. Without loss
of generality, we normalize P (k) so that

PY0)=P 7 h0)=1.
Hence, the formal results are

1

kO =—
P k)

[e,—ik A (k)] (3.31)

and

k€l (k) =€ [1—P' (k)] —ikP (A (k). (3.32)

IV. EXPLICIT RESULTS

To proceed further, one needs explicit representations
for the factors P‘*(k). One could carry out the factori-
zation numerically [12]. On the other hand, we find from
(3.18) that

_J1+0k?), |kl<<1
P bkl , |k|>>1 @D
with -
B, (1+8;)
bw)y=— [4———F— |, 4.2
v Kv?2 B.B; l “2)

which vanishes at v =c, and is greater than zero for v
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less than cz. We therefore approximate F(k) as

Flk)~V1+b%?, (4.3)
which produces the right behavior in both the small and
large |k| limits and which allows us to carry out the
analysis explicitly. In effect, we replace the complex
poles and zeros of F(k) by a pair of branch points. This
approach was first adopted by Barber, Donley, and
Langer [13]. To be consistent with this approximation,
we also take

4B ——— k4B
— ~ v 224 K ! .
kG (k)= 2B,b 1+b%k +2 b (4.4)
1. T3 K 1
- ==V 1+b%k?+———— . )
kH(k) b b’k 8, b (4.5)

This approximation is checked to reproduce the Irwin-
Williams equilibrium asymptotic stress field [14] when
the crack speed v becomes vanishingly small. We there-
fore believe that this approach does not miss any essential
features of the problem.

Our approximate form for P(k) is then

P(k)=V'1+b*k*+imvk? , (4.6)

which has the same form as the kernel Q(k) in (3.3) of
LN. The three roots of V' 1+b2k2+i%jvk>=0 are denot-
ed by k,, k;, and k,. The root ky= —ip, is always on
the negative imaginary k axis; k, is complex with positive
real and  imaginary parts, k,=—k}, and
—ifjvkok k,=+1. The factorization of P(k) is then ac-
complished by using the Cauchy method [9,15] to write

P(k)

=o M (k)+d' k),
ifo(k —ko)k—k)(k—k,)

In

4.7)

and ®* are expressed as integrals over the discontinui-
ties across the corresponding branch cuts of the branch
points at +i /b:

Oy=F [~ dp 6(p) 4.
k) fl 7 (ptibk) ’ “.8)
where
o
6(p) =arctan | LE-—1 4.9)
3
174
and y =7jv /b>. The explicit forms for P'*’ are
P (k)= —nvpyk —k )k —k,)
Xexp[®' T (k)—®'t(0)], (4.10)
PO = [1— K |explo k) -2 (0)] . @.11)

Po

The ®*)(0) are included to give the normalization
PH0)=1.

We are interested in the stress distribution at the crack
tip. We get €,(£) by inverse Fourier transforming (3.32)
and &,,(§—07,0) is just 5o(0™ )=u&,(0~). From (3.25)
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and (3.26) and using (4.4) and (4.5), we have

Ko (k0)= AWK, (k0 —p [1-2 |, 4.12)
where
(1+B3)(1+2B8}—B%)—4
()= B: Bi—B;)—4B,B, . 13)

48,8, —(1+B2)?

Hence, for £ <0,

Tl60=p | 1= 2 |e,+ AW, (£,0—pe, ] . @14
From (3.24) and (3.27), we get
7,,(£0)=0 . (4.15)

With the use of the approximation (4.6) for P(k), the
present problem has the same mathematical structure as
that of LN; thus our results resemble those presented
there:

Z,(07)=¢,{U07)}

P €, (—), A
+ I _® ' TN0)_ =
Pot—, P efo T(E)dE
—€T(A) , 4.16)
6 _ & i x
UM=g = J Tdx [ sz , 4.17)
where
_ dk e4<p“’(k)—ikz
T(z)= i kT (4.18)
dk e—®(+)(k)+ikz
=_[8ok_e =~ = 4.
S(z) 2 (k—k Nk—k,) ’ @19
_ 1o
po=—["6p)p 4.20)

and €=0 /u is the yield strain. We see that €,(07) is
nonsingular, as discussed before. The new Barenblatt
condition is obtained [9] by requiring the traction on the
crack surface just behind the crack tip to be finite:

€5 - A

— =poe® O ["T(£)dE , 4.21)
€ 0

which also ensures the continuity of stress at the crack

tip. Thus, we have

7,,(07,0)=&,(0")=5[1—T(A)] . (4.22)

The other stress components are given by (4.14) and
(4.15). For v—0, A (v)=1; therefore,

0.4(07,00= =2 e _+7,,(07,00<5,,07,0), @23
as one would expect for crack propagating along the x-
direction. However, for larger speeds, as 4 (v) is a mono-
tonic increasing function of v, &,,(07,0) may overtake
0,,(07,0). If this occurs, crack growth along the x
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direction will not release the maximum stress.
To investigate this, define
04=07,,(07,0)—7,(07,0) (4.24)
and study its behavior as a function of the crack speed v.
Using (4.14) and (4.22), we get

Ry;=—2=[4(w)—1][1-T(A)]—

g
-4 A)—1+2
o K

€

(4.25)
The most interesting behavior of the model [9,10]

occurs when the system parameters are such that there

exists a regime where A /b << vy << 1. In this regime, we
have the following approximations:

_Z
2bVy
S(z)=z, z<<Vy .

Using (4.26) in (4.17) and (4.21), we get the following re-
sults which are the same as those obtained in LN:
12

T(z)=~1— , z<<Vly

(4.26)

4[5 e
~stlwel 1= | 4.27)
A28 e ]t
el Dl il ol B 4.2
=3 e | e 4.28)

where

_8 172
€g=€, (v—0)= A;T 4.29)

is the Griffith threshold at which crack propagation first
becomes energetically possible. Hence we have
173 1/6
3 4
[ 5 [A4(v)—1] 81

Vi |awm—-1+2 ||
K 4

1/12 ]

(4.30)

The range of validity of (4.30) is determined by the self-
consistency of (4.27) and (4.28), with A/b <<\/; <1,
and is given by
2

Ky <Kl1l.

36

(4.31)

Thus, (4.30) has a large range of validity whenever the
macroscopic length W is very large. The corresponding
range of velocities is determined by the value of 7. In the
following section, (4.30) will be evaluated numerically
and the variation of R; with the crack speed v will be
studied.

V. INTERPRETATION AND DISCUSSION

The quantity R; depends only on v with x, 7, and
8/(WE) being system-dependent parameters. In practice

[11), Possion’s ratio v varies from O to 1/2, so we have

[see Eq. (2.4)]

k22 (plane strain)

(5.1)
4> k22 (plane stress) .
The system-dependent parameter
€
_8_ = l -6 (5.2)
We 2| €

must be very small in any realistic situation so that the
yield strain € greatly exceeds the Griffith threshold €.
In the numerical calculation, ¥ and &/( W§€) are fixed to
be 3 and 1079, respectively. The value of ¥ allowed is
between 2.3X 107" and 10™* so that A /b <1/20V'y and
V¥ £0.01. The corresponding value of €, /€ ranges be-
tween 7 and 28. The values of 7 are chosen so that a
reasonably large range of velocities is covered under the
above constraints on y. The results are displayed in Fig.
2.

It is reasonable to expect a crack to propagate perpen-
dicular to the direction of the maximum principal stress.
Thus, one expects R, to be negative. This is indeed the
case when the crack speeds are small for all the values of
7 studied. However, when the crack moves faster than
some critical value v., R; becomes positive, indicating
that steady-state crack propagation at such speeds is
probably unstable. In fact, if the crack continues to
propagate perpendicular to the direction of the maximum
principal stress, it would have to propagate off the x
direction. We note that Marder and Liu [16] recently
found that fracture of a triangular lattice involves break-
ing of bonds off the crack path when its speed is greater
than 0.67 of the sound speed.

Furthermore, consider the two planes (or lines in our
two-dimensional case) which make a small angle 7 with
the negative x axis. The shear stress acting at the crack

0.0010 T T T ¥

v * o
o °
v ** ° R
v o
v * o oL
v * ° °
* o
v o
v Nl o 54
| o o A
0.0005 v % ° o A
v * (o) o A
v * o° ° S
VoK o ° a2
v * (o] < ad
o @ X o K3 20
o A o A
. an®
* o o A a
77k 0000 500° “ 0o
0.0000 Tk E 000 000% 0a®
. *X00 33 A oo
ZXAAAAAAAA DQUUDDDD
86566000000000000
-0.0005 - . " "
0.0 0.1 0.2 0.3 0.4 0.5

FIG. 2. R, as a function of crack speed v for different values
of 7. The speed v is measured in units of the transverse wave
speed c, of the material. The values of 7 are 107'° (downward
triangles), 10~ (stars), 10~% (circles), 10~ (diamonds), 10~ (up-
ward triangles), and 10~ (squares).



3388 EMILY S. C. CHING 49

tip, along these planes, is given by

0,=[0,(07,0)—0,,(07,0)]sinT cosT=0 4sinT cosT .
(5.3)

At small crack speeds, o, <0 so o is negative, which op-
poses any tendency for the crack to deviate from its origi-
nal direction. However, for speeds greater than v,, o is
positive. Suppose the crack starts to deviate slightly
from its original direction; this positive shear stress will
then act in a direction that enhances the deviation, again
indicating that steady-state propagation will be unstable.

From (4.30), note that the critical speed v, depends
only on 7. Recall that %=nc, /(uW?), so v, depends on
both material properties and the width of the strip. The
dependence of v, on 7 is shown in Fig. 3. We should
mention that this result does not quite agree with the ex-
perimental finding of Fineberg et al. [3] that the critical
velocity is independent of sample geometry. On the other
hand, values of v, close to those observed experimentally
can be obtained when 7 is chosen appropriately.

Hence, we have shown that the crack tip stress field
changes qualitatively when the speed of propagation is
larger than some critical value. Such a dynamical
modification has the interesting indication that steady-
state crack propagation above the critical speed is prob-
ably unstable.

0.5 T T T T T

04 r ) 4

03 | ©
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FIG. 3. The dependence of the critical speed v, on the pa-
rameter 7 with v, measured in units of the transverse wave
speed ¢, of the material.
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